1,447 research outputs found

    Scale-free topology optimization for software-defined wireless sensor networks: A cyber-physical system

    Get PDF
    Due to the limited resource and vulnerability in wireless sensor networks, maximizing the network lifetime and improving network survivability have become the top priority problem in network topology optimization. This article presents a wireless sensor networks topology optimization model based on complex network theory and cyber-physical systems using software-defined wireless sensor network architecture. The multiple-factor-driven virtual force field and network division–oriented particle swarm algorithm are introduced into the deployment strategy of super-node for the implementation in wireless sensor networks topology initialization, which help to rationally allocate heterogeneous network resources and balance the energy consumption in wireless sensor networks. Furthermore, the preferential attachment scheme guided by corresponding priority of crucial sensors is added into scale-free structure for optimization in topology evolution process and for protection of vulnerable nodes in wireless sensor networks. Software-defined wireless sensor network–based functional architecture is adopted to optimize the network evolution rules and algorithm parameters using information cognition and flow-table configure mode. The theoretical analysis and experimental results demonstrate that the proposed wireless sensor networks topology optimization model possesses both the small-world effect and the scale-free property, which can contribute to extend the lifetime of wireless sensor networks with energy efficiency and improve the robustness of wireless sensor networks with structure invulnerability

    PCV25 A Pharmacoeconomic Assessment of Recombinant Tissue Plasminogen Activator Therapy for Acute Ischemic Stroke in a Tertiary Hospital in China

    Get PDF

    Analysis of the dynamic changes in the soft palate and uvula in obstructive sleep apnea-hypopnea using ultrafast magnetic resonance imaging

    No full text
    Apnea and the respiratory cycle are dynamic processes in obstructive sleep apnea-hypopnea (OSAH), which occur only during sleep. Our study aimed to observe the dynamic changes in the soft palate and the uvula during wakefulness and sleep using ultrafast magnetic resonance imaging (UMRI) to provide reference data for the pathogenesis and treatment of OSAH. The dynamic changes in the soft palate and uvular tip of 15 male patients (average age: 50.43 ± 9.82 years) with OSAH were evaluated using UMRI of the upper airway while asleep and awake after 1 night of sleep deprivation. A series of midline sagittal images of the upper airway were obtained. The distance from the center of the soft palate to the x-axis (an extended line from the anterior nasal spine to the posterior nasal spine), from the uvular tip to the x-axis, from the center of the soft palate to the y-axis (a perpendicular line from the center of the pituitary to the x-axis), and from the uvular tip to the y-axis (designated as PX, UX, PY, and UY, respectively) were measured during sleep and wakefulness. The minimum PX, PY, UX, and UY were shorter during sleep than during wakefulness, whereas the maxima were longer during sleep (P < 0.01), the differences between the maximum and minimum PX, PY, UX, and UY were larger during sleep (P < 0.01). The upward, downward, forward, and backward ranges of movement of the soft palate and the uvular tip were larger during sleep in OSAH patients. This increased compliance may trigger each airway obstructive event

    Clonal spread of SCCmec type IV methicillin-resistant Staphylococcus aureus between community and hospital

    Get PDF
    ABSTRACTThe staphylococcal chromosome cassette (SCC)mec types of 382 hospital-acquired methicillin-resistant Staphylococcus aureus (HA-MRSA) isolates in Taiwan were analysed over a 7-year period (1999–2005). There was an abrupt increase in SCCmec type IV in HA-MRSA during 2005. The molecular epidemiology of a subset (n = 69) of HA-MRSA isolates with SCCmec types III, IV or V was characterised and compared with that of community-acquired MRSA (CA-MRSA) (n = 26, collected during 2005). Pulsed-field gel electrophoresis revealed three major pulsotypes (A, B and C) and 15 minor clones. Pulsotypes B and C, which contained isolates carrying SCCmec types IV and V, respectively, included both CA-MRSA and HA-MRSA isolates. Among 24 toxin genes analysed, five genes had significant differential distribution between CA-MRSA and SCCmec type III HA-MRSA. Furthermore, among SCCmec type IV isolates, the seb gene was detected more commonly in HA-MRSA. Analysis of representative members of the three major pulsotypes by multilocus sequence typing revealed two sequence types (STs), namely ST239 (SCCmec III) and ST59 (SCCmec IV or SCCmec V). This suggests that ST59:SCCmec IV, which is usually community-acquired, has become an important nosocomial pathogen in the hospital studied

    Identification of differentially expressed genes induced by Bamboo mosaic virus infection in Nicotiana benthamiana by cDNA-amplified fragment length polymorphism

    Get PDF
    Background: The genes of plants can be up- or down-regulated during viral infection to influence the replication of viruses. Identification of these differentially expressed genes could shed light on the defense systems employed by plants and the mechanisms involved in the adaption of viruses to plant cells. Differential gene expression in Nicotiana benthamiana plants in response to infection with Bamboo mosaic virus (BaMV) was revealed using cDNA-amplified fragment length polymorphism (AFLP). Results: Following inoculation with BaMV, N. benthamiana displayed differential gene expression in response to the infection. Isolation, cloning, and sequencing analysis using cDNA-AFLP furnished 90 cDNA fragments with eight pairs of selective primers. Fifteen randomly selected genes were used for a combined virus-induced gene silencing (VIGS) knockdown experiment, using BaMV infection to investigate the roles played by these genes during viral infection, specifically addressing the means by which these genes influence the accumulation of BaMV protein. Nine of the 15 genes showed either a positive or a negative influence on the accumulation of BaMV protein. Six knockdown plants showed an increase in the accumulation of BaMV, suggesting that they played a role in the resistance to viral infection, while three plants showed a reduction in coat protein, indicating a positive influence on the accumulation of BaMV in plants. An interesting observation was that eight of the nine plants showing an increase in BaMV coat protein were associated with cell rescue, defense, death, aging, signal transduction, and energy production. Conclusions: This study reports an efficient and straightforward method for the identification of host genes involved in viral infection. We succeeded in establishing a cDNA-AFLP system to help track changes in gene expression patterns in N. benthamiana plants when infected with BaMV. The combination of both DNA-AFLP and VIGS methodologies made it possible to screen a large number of genes and identify those associated with infections of plant viruses. In this report, 9 of the 15 analyzed genes exhibited either a positive or a negative influence on the accumulation of BaMV in N. benthamiana plants

    Energy-efficient monitoring in software defined wireless sensor networks using reinforcement learning: A prototype

    Get PDF
    Software defined wireless networks (SDWNs) present an innovative framework for virtualized network control and flexible architecture design of wireless sensor networks (WSNs). However, the decoupled control and data planes and the logically centralized control in SDWNs may cause high energy consumption and resource waste during system operation, hindering their application in WSNs. In this paper, we propose a software defined WSN (SDWSN) prototype to improve the energy efficiency and adaptability of WSNs for environmental monitoring applications, taking into account the constraints of WSNs in terms of energy, radio resources, and computational capabilities, and the value redundancy and distributed nature of data flows in periodic transmissions for monitoring applications. Particularly, we design a reinforcement learning based mechanism to perform value-redundancy filtering and load-balancing routing according to the values and distribution of data flows, respectively, in order to improve the energy efficiency and self-adaptability to environmental changes for WSNs. The optimal matching rules in flow table are designed to curb the control signaling overhead and balance the distribution of data flows for achieving in-network fusion in data plane with guaranteed quality of service (QoS). Experiment results show that the proposed SDWSN prototype can effectively improve the energy efficiency and self-adaptability of environmental monitoring WSNs with QoS

    Comparison of Genomes of Three Xanthomonas oryzae Bacteriophages

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Xp10 and OP1 are phages of <it>Xanthomonas oryzae </it>pv. oryzae (Xoo), the causative agent of bacterial leaf blight in rice plants, which were isolated in 1967 in Taiwan and in 1954 in Japan, respectively. We recently isolated the Xoo phage Xop411.</p> <p>Results</p> <p>The linear Xop411 genome (44,520 bp, 58 ORFs) sequenced here is 147 bp longer than that of Xp10 (60 ORFs) and 735 bp longer than that of OP1 (59 ORFs). The G+C contents of OP1 (51%) and Xop411 and Xp10 (52% each) are less than that of the host (65%). The 9-bp 3'-overhangs (5'-GGACAGTCT-3') in Xop411 and Xp10 are absent from OP1. More of the deduced Xop411 proteins share higher degrees of identity with Xp10 than with OP1 proteins, while the right end of the genomes of Xp10 and OP1, containing all predicted promoters, share stronger homology. Xop411, Xp10, and OP1 contain 8, 7, and 6 freestanding HNH endonuclease genes, respectively. These genes can be classified into five groups depending on their possession of the HNH domain (HNN or HNH type) and/or AP2 domain in intact or truncated forms. While the HNN-AP2 type endonuclease genes dispersed in the genome, the HNH type endonuclease genes, each with a unique copy, were located within the same genome context. Mass spectrometry and N-terminal sequencing showed nine Xop411 coat proteins, among which three were identified, six were assigned as coat proteins (4) and conserved phage proteins (2) in Xp10. The major coat protein, in which only the N-terminal methionine is removed, appears to exist in oligomeric forms containing 2 to 6 subunits. The three phages exhibit different patterns of domain duplication in the N-terminus of the tail fiber, which are involved in determination of the host range. Many short repeated sequences are present in and around the duplicated domains.</p> <p>Conclusion</p> <p>Geographical separation may have confined lateral gene transfer among the Xoo phages. The HNN-AP2 type endonucleases were more likely to transfer their genes randomly in the genome and may degenerate after successful transmission. Some repeated sequences may be involved in duplication/loss of the domains in the tail fiber genes.</p

    A comparison of statistical machine learning methods in heartbeat detection and classification

    Get PDF
    In health care, patients with heart problems require quick responsiveness in a clinical setting or in the operating theatre. Towards that end, automated classification of heartbeats is vital as some heartbeat irregularities are time consuming to detect. Therefore, analysis of electro-cardiogram (ECG) signals is an active area of research. The methods proposed in the literature depend on the structure of a heartbeat cycle. In this paper, we use interval and amplitude based features together with a few samples from the ECG signal as a feature vector. We studied a variety of classification algorithms focused especially on a type of arrhythmia known as the ventricular ectopic fibrillation (VEB). We compare the performance of the classifiers against algorithms proposed in the literature and make recommendations regarding features, sampling rate, and choice of the classifier to apply in a real-time clinical setting. The extensive study is based on the MIT-BIH arrhythmia database. Our main contribution is the evaluation of existing classifiers over a range sampling rates, recommendation of a detection methodology to employ in a practical setting, and extend the notion of a mixture of experts to a larger class of algorithms

    Detection of herb-symptom associations from traditional chinese medicine clinical data

    Get PDF
    YesTraditional Chinese medicine (TCM) is an individualized medicine by observing the symptoms and signs (symptoms in brief) of patients. We aim to extract the meaningful herb-symptom relationships from large scale TCM clinical data. To investigate the correlations between symptoms and herbs held for patients, we use four clinical data sets collected from TCM outpatient clinical settings and calculate the similarities between patient pairs in terms of the herb constituents of their prescriptions and their manifesting symptoms by cosine measure. To address the large-scale multiple testing problems for the detection of herb-symptom associations and the dependence between herbs involving similar efficacies, we propose a network-based correlation analysis (NetCorrA) method to detect the herb-symptom associations. The results show that there are strong positive correlations between symptom similarity and herb similarity, which indicates that herb-symptom correspondence is a clinical principle adhered to by most TCM physicians. Furthermore, the NetCorrA method obtains meaningful herb-symptom associations and performs better than the chi-square correlation method by filtering the false positive associations. Symptoms play significant roles for the prescriptions of herb treatment. The herb-symptom correspondence principle indicates that clinical phenotypic targets (i.e., symptoms) of herbs exist and would be valuable for further investigations

    Baculovirus Transduction of Mesenchymal Stem Cells: In Vitro Responses and In Vivo Immune Responses After Cell Transplantation

    Get PDF
    Baculovirus holds great promise for the genetic modification of mesenchymal stem cells (MSCs). However, whether baculovirus transduction provokes undesired MSCs responses that might compromise their in vivo applications has yet to be examined. Hereby, we unraveled that baculovirus transduction of human MSCs upregulated the transcription of interleukin (IL)-1 beta, interferon (IFN)-alpha and IL-6, but not tumor necrosis factor (TNF)-alpha and IFN-gamma. However, only IL-6 secretion was detectable by enzyme-linked immunosorbent assay (ELISA). Baculovirus transduction also stimulated transient, low level upregulation of human leukocyte antigen I (HLA-I) on the human MSCs surface, yet it did not either altered the HLA-II expression or impaired the MSCs ability to inhibit lymphocyte proliferation. After transplantation into allogeneic rats, the transduced rat MSCs elicited transient, mild macrophage responses, but the cells remained tolerant as judged by the persistence of transplanted cells and absence of CD8(+) T cells infiltration. Besides, transplantation of the transduced MSCs did not provoke systemic induction of monocytes and CD8(+) T cells. This study, for the first time, explores the responses of MSCs to virus transduction and confirms the safety of transplanting baculovirus-engineered MSCs into immunocompetent animals for cell-based gene therapy
    corecore